일반적으로 선형 회귀 분석은 연속형 값을 예측하기에 적합하지만 범주형(분류)으로 예측하기에는 적합하지 않습니다. 선형 회귀 분석은 타겟 데이터의 범위가 무한대이기 때문입니다. 범위가 무한대라는 것은 만일 피처 데이터를 입력으로 두 개의 class(0, 1)로 분류해야 할 때 예측값이 0 또는 1로 제한되어 있다면 가능하지만, 3이라는 값으로 예측하게 된다면 이것은 0과 1로 분류하기는 어렵다는 것을 의미합니다. 이러한 문제를 해결하기 위한 방법 중 하나가 바로 로지스틱 회귀입니다. 로지스틱 회귀는 일반적인 선형 회귀 분석에서 출력값에 시그모이드 함수를 사용하여 0과 1사이의 값으로 변환시키는 방법으로, 이진 분류 방법입니다. (다중 분류일 경우에는 소프트맥스 함수를 사용해야 합니다.) z는 선형 회귀 모..